
Apache Crail incubating
Documentation

Release 1.0

_

Aug 21, 2022

OVERVIEW

1 Introduction 3

2 Deploy Crail 5

3 Building from source 7

4 Docker 9

5 Configuration 11

6 Run 17

7 Shell 21

8 iobench 23

9 fsck 27

10 Spark 29

11 Programming against Crail 31

12 How to release 33

13 Contribute 43

14 Contact 45

i

ii

Apache Crail incubating Documentation, Release 1.0

Apache Crail (Incubating) is a high-performance distributed data store designed for fast sharing of ephemeral data in
distributed data processing workloads.

OVERVIEW 1

Apache Crail incubating Documentation, Release 1.0

2 OVERVIEW

CHAPTER

ONE

INTRODUCTION

Apache Crail (Incubating) is a fast multi-tiered distributed storage system designed from ground up for high-
performance network and storage hardware. The unique features of Crail include:

• Zero-copy network access from userspace

• Integration of multiple storage tiers such DRAM, flash and disaggregated shared storage

• Ultra-low latencies for both meta data and data operations. For instance: opening, reading and closing a small
file residing in the distributed DRAM tier less than 10 microseconds, which is in the same ballpark as some of
the fastest RDMA-based key/value stores

• High-performance sequential read/write operations: For instance: read operations on large files residing in the
distributed DRAM tier are typically limited only by the performance of the network

• Very low CPU consumption: a single core sharing both application and file system client can drive sequential
read/write operations at the speed of up to 100Gbps and more

• Asynchronous API leveraging the asynchronous nature of RDMA-based networking hardware

• Extensible plugin architecture: new storage tiers tailored to specific hardware can be added easily

Crail is implemented in Java offering a Java API which integrates directly with the Java off-heap memory. Crail is
designed for performance critical temporary data within a scope of a rack or two.

3

Apache Crail incubating Documentation, Release 1.0

4 Chapter 1. Introduction

CHAPTER

TWO

DEPLOY CRAIL

Download the latest binary image from here and configure it. Alternatively you can build from source or use our Docker
container image.

5

Apache Crail incubating Documentation, Release 1.0

6 Chapter 2. Deploy Crail

CHAPTER

THREE

BUILDING FROM SOURCE

Follow the steps below to build Crail from source.

3.1 Requirements

• Java 8 or higher

• RDMA-based network, e.g., Infiniband, iWARP, RoCE. There are two options to run Crail without RDMA
networking hardware: (a) use SoftiWARP, (b) us the TCP/DRAM storage tier

• Libdisni.so, available as part of DiSNI

3.2 Building

To build Crail from source using Apache Maven execute the following steps:

1. (a) Clone from Apache: git clone http://git-wip-us.apache.org/repos/asf/
incubator-crail.git or

(b) Clone from Github: git clone https://github.com/apache/incubator-crail or

(c) Download and unpack the latest source release from here

2. Run: mvn -DskipTests install

3. Copy tarball from assembly/target to the cluster and unpack it using tar xvfz crail-X.
Y-incubating-bin.tar.gz

Note: later, when deploying Crail, make sure libdisni.so is part of your LD_LIBRARY_PATH. The easiest way to make
it work is to copy libdisni.so into $CRAIL_HOME/lib/

7

https://github.com/zrlio/disni
http://maven.apache.org
http://crail.apache.org/download

Apache Crail incubating Documentation, Release 1.0

8 Chapter 3. Building from source

CHAPTER

FOUR

DOCKER

The easiest way to run Crail is to use Docker images. We provide two preconfigured Docker images:

(1) TCP/DRAM: apache/crail

(2) RDMA/DRAM: apache/crail_rdma

If you want to run other or more complex configurations you can use either image as a basis and provide your own
configuration files. Refer to Own configurations for details.

(1) and 2. share the following configuration parameters:

Property Default Value Description
NAMENODE_HOST localhost Namenode hostname/ip to bind to
NAMENODE_PORT 9060 Namenode port to listen on
INTERFACE eth0 Datanode network interface to listen on
DATAPATH /dev/hugepages/data Datanode hugepage path to data
STORAGELIMIT 1073741824 Datanode Size (Bytes) of DRAM to provide
CACHEPATH /dev/hugepages/cache Client/Datanode hugepage path to buffer cache
CACHELIMIT 0 Size (Bytes) of hugepage buffer cache

These properties can be specified as environment variables when starting a Docker image with -e
<property>=<value>.

4.1 TCP image

To run Crail you first need to start the namenode. For example

docker run -it --network host -e NAMENODE_HOST=host02 -e INTERFACE=eth5 apache/crail␣
→˓namenode

starts a TCP namenode using Docker’s host network configuration on host02 on interface eth5. The TCP tier allows
for other network configurations. Refer to https://docs.docker.com/network/ for details.

Once the namenode has started start a Crail TCP storage tier (preferably on a different node). For example

docker run -it --network host -e NAMENODE_HOST=host02 -e INTERFACE=eth5 apache/crail␣
→˓datanode

starts a TCP datanode with 1GB of storage (default) listening on eth5. It is recommended to put the data directory on
a hugetlb mount. You can do this by passing an mounted hugetlb directory on the host as a volume to Docker. For
example

9

https://docs.docker.com/network/

Apache Crail incubating Documentation, Release 1.0

docker run -it --network host -e NAMENODE_HOST=host02 -e INTERFACE=eth5 -v /dev/
→˓hugepages:/dev/hugepages apache/crail datanode

passes the hugetlb mount /dev/hugepages to the container.

4.2 RDMA image

To run Crail/RDMA/DRAM you can start the namenode as follows:

docker run -it --network host -e NAMENODE_HOST=host02 -e INTERFACE=eth5 --cap-add=IPC_
→˓LOCK --device=/dev/infiniband/uverbs0 --device=/dev/infiniband/rdma_cm -v /dev/
→˓hugepages:/dev/hugepages apache/crail_rdma namenode

This starts a namenode on host02 using the host’s network on eth5. Note that the uverbs device needs to match the
interface.

To run a RDMA storage tier:

docker run -it --network host -e NAMENODE_HOST=host02 -e INTERFACE=eth5 --cap-add=IPC_
→˓LOCK --device=/dev/infiniband/uverbs0 --device=/dev/infiniband/rdma_cm -v /dev/
→˓hugepages:/dev/hugepages apache/crail_rdma datanode

Note: The RDMA docker image provides default RDMA provider libraries from Ubuntu 18.04. They might not be
compatible with your host’s RDMA stack. To install your own RDMA libraries use -v or create your own Docker image
from crail_rdma.

4.3 Own configurations

If you want to run more complex configurations that are not covered by the options above you have two options:

(1) Create your own Docker image by creating a Dockerfile and using the crail images as a source. You can then
change the configuration by e.g. copying your own config into the image

(2) Pass your config as a volume with -v <local_path>:<docker_path>

10 Chapter 4. Docker

CHAPTER

FIVE

CONFIGURATION

To configure Crail use the *.template files as a basis and modify it to match your environment. Set the $CRAIL_HOME
environment variable to your Crail deployment’s path.

cd $CRAIL_HOME/conf
mv crail-site.conf.template crail-site.conf
mv crail-env.sh.template crail-env.sh
mv core-site.xml.template core-site.xml
mv slaves.template slaves

Note: Docker containers can be configured by using config files above. However it is only recommended for complex
configurations. See Docker for details.

The purpuse of each of these files are:

• crail-site.conf : Configuration of the file system, data tiers and RPC

• crail-env.sh: Allows to pass additional JVM arguments

• core-site.xml: Configuration of the HDFS adapter

• slaves: Used by the start-crail.sh script to ease running Crail on multiple machines

5.1 crail-site.conf

There are a general file system properties and specific properties for the different storage tiers. Typical properties you
might want to change are:

Property Default Value Description
crail.namenode.address crail://localhost:9060 Namenode hostname and port
crail.cachelimit 1073741824 Size (byte) of client buffer cache
crail.cachepath /dev/hugepages/cache Hugepage path to client buffer cache

Advanced properties (Only modify if you know what you are doing):

11

Apache Crail incubating Documentation, Release 1.0

Property Default Value Description
crail.directorydepth 16 Maximum depth of directory tree
crail.tokenexpiration 10 Seconds write token is valid
crail.blocksize 1048576 Size (byte) of block
crail.user crail Username used for HDFS adapter
crail.debug false Enable debug output
crail.statistics true Collect statistics
crail.rpctimeout 1000 RPC timeout in milliseconds
crail.datatimeout 1000 Data operation timeout in milliseconds
crail.buffersize 1048576 Size (byte) of buffer (buffered stream)
crail.slicesize 524288 Size (byte) of slice (transfer unit)
crail.singleton true Only create a single instance of the FS
crail.regionsize 1073741824 Size (byte) of allocation unit (Cache)
crail.directoryrecord 512 Size (byte) of directory entry
crail.
directoryrandomize

true Randomize iteration of directories

crail.cacheimpl org.apache.crail.memory.MappedBufferCacheClient buffer cache implementation
crail.namenode.
fileblocks

16 File

crail.namenode.
blockselection

roundrobin Block selection algorithm: roundrobin
or random

5.1.1 RPC

Crail’s modular architecture allows to plugin different kinds of RPC implementations. The crail.namenode.
rpctype property is used to configure the RPC implementation. We currently offer two implementations:

• A TCP implementation based on narpc (default): org.apache.crail.namenode.rpc.tcp.TcpNameNode

• A RDMA implementation based on darpc: org.apache.crail.namenode.rpc.darpc.DaRPCNameNode

Logging

To allow shutting down the namenode without loosing data Crail offers namenode logging. It can be enabled by setting
a path to the log file with crail.namenode.log.

Note: this feature is experimental and should be used with caution

5.1.2 Storage Tiers

Crail offers multiple types of datanode dependent on your network and storage requirements:

(a) TCP storage tier backed by DRAM (default)

(b) RDMA storage tier backed by DRAM

(c) NVMe over Fabrics storage tier, typically backed by NVMe drives

Crail allows to use multiple storage tier types together, e.g. to store hot data on DRAM and cold data on NVMe,
or extend your DRAM by NVMe storage. Storage types can be configured as a comma separated list by setting the
crail.storage.types property:

(a) TCP: org.apache.crail.storage.tcp.TcpStorageTier

12 Chapter 5. Configuration

https://github.com/zrlio/narpc
https://github.com/zrlio/darpc

Apache Crail incubating Documentation, Release 1.0

(b) RDMA: org.apache.crail.storage.rdma.RdmaStorageTier

(c) NVMf: org.apache.crail.storage.nvmf.NvmfStorageTier

Each of the storage types in the list defines a storage class, starting from storage class 0. Types can appear multiple times
to allow defining multiple storage classes for a type. The maximum number of storage classes needs to be specified
with the crail.storage.classes property (default = 1). In the default configuration storage classes are used in
incremental order, i.e. storage class 0 is used until no more space is left then storage class 1 is used and so on. However
filesystem nodes (e.g. files) can also be created on a particular storage class and can be configured to inherit the storage
class of its container. The default storage class of / is 0 however it can be configured via crail.storage.rootclass.

Storage tiers send keep alive messages to the namenode to indicate that they are still running and no error has occured.
The interval in which keep alive message are send can be configured in seconds with crail.storage.keepalive.

Some of the configuration properties can be set via the command line when starting a storage tier. Refer to Run for
details.

TCP Tier

The TCP storage tier (org.apache.crail.storage.tcp.TcpStorageTier) is backed by DRAM. The following properties can
be set to configure the storage tier:

Property Default Value Description
crail.storage.tcp.
interface

eth0 Network interface to bind to

crail.storage.tcp.
storagelimit

1073741824 Size (Bytes) of DRAM to provide, multiple of alloca-
tion size

crail.storage.tcp.datapath /dev/hugepages/data Hugepage path to data

Advanced properties:

Property Default Value Description
crail.storage.tcp.port 50020 Port to listen on
crail.storage.tcp.allocationsize crail.regionsize Allocation unit
crail.storage.tcp.queuedepth 16 Data operation queue depth (single connection)
crail.storage.tcp.cores 1 Threads to process requests

RDMA Tier

The RDMA storage tier (org.apache.crail.storage.rdma.RdmaStorageTier) is backed by DRAM. The following proper-
ties can be set to configure the storage tier:

Property Default Value Description
crail.storage.rdma.
interface

eth0 Network interface to bind to

crail.storage.rdma.
storagelimit

1073741824 Size (Bytes) of DRAM to provide; multiple of alloca-
tion size

crail.storage.rdma.datapath /dev/hugepages/data Hugepage path to data

Advanced properties:

5.1. crail-site.conf 13

Apache Crail incubating Documentation, Release 1.0

Property Default
Value

Description

crail.storage.rdma.port 50020 Port to listen on
crail.storage.rdma.
allocationsize

crail.regionsize Allocation unit

crail.storage.rdma.localmap true Use mmap if client is colocated with data tier
crail.storage.rdma.queuesize 32 Data operation queue depth (single connection)
crail.storage.rdma.type passive Operation type: passive or active (see DiSNI)
crail.storage.rdma.persistent false Allow restarting a data tier if namenode logging is

used
crail.storage.rdma.backlog 100 Listen backlog
crail.storage.rdma.
connecttimeout

1000 Connect timeout in milliseconds

NVMf Tier

The NVMf storage tier (org.apache.crail.storage.nvmf.NvmfStorageTier) is typically backed by NVMe drives. However
some target implementations support using any block device. Unlike the RDMA and TCP storage tier the NVMf storage
tier is not involved in any data operation but only is used to provide metadata information. Crail uses the jNVMf library
to connect to a standard NVMf target to gain metadata information about the storage and provide the information to
the namenode. Clients directly connect to the NVMf target. Crail has been tested to run with the Linux kernel, SPDK
and Mellanox ConnectX-5 offloading target.

The following properties can be set to configure the storage tier:

Property Default Value Description
crail.storage.nvmf.ip localhost IP/hostname of NVMf target
crail.storage.nvmf.port 50025 Port of NVMf target
crail.storage.nvmf.nqn nqn.2017-06.io.crail:cnode NVMe qualified name of NVMf controller
crail.storage.nvmf.namespace 1 Namespace of NVMe device
crail.storage.nvmf.hostnqn <random 128bit UUID> NVMe qualified name of host

Advanced properties:

Property Default
Value

Description

crail.storage.nvmf.
allocationsize

crail.regionsize Allocation unit

crail.storage.nvmf.queueSize 64 NVMf submission queue size
crail.storage.nvmf.
stagingcachesize

262144 Staging cache size (byte) for read-modify-write oper-
ations

14 Chapter 5. Configuration

https://github.com/zrlio/jNVMf

Apache Crail incubating Documentation, Release 1.0

5.2 crail-env.sh

Modify crail-env.sh to pass additional JVM arguments to crail respectively start-crail.sh.

It is recommended to increase heap (e.g. -Xmx24g) and young generation heap size (e.g. -Xmn16g) for the namenodes
and TCP datanodes to improve performance for large deployments.

5.3 core-site.xml

To configure the HDFS adapter modify core-site.xml. For example the Crail shell crail fs uses the HDFS adapter
thus requiring the core-site.xml file to be setup. Modify fs.defaultFS to match crail.namenode.address in
crail-site.conf . The default is:

<property>
<name>fs.defaultFS</name>
<value>crail://localhost:9060</value>

</property>

5.4 slaves

The slaves file can be used to ease starting Crail on larger deployments. Refer to Run for details. Each line should
contain a hostname where a storage tier is supposed to be started. Make sure the hostname allows passwordless ssh
connections. Note that the hostnames are not used by the storage tier itself but only by the start/stop-crail.sh scripts
to start and stop storage tiers. IP/hostname of the storage tiers or any other configuration option are either passed by
command line arguments or via crail-site.conf . Command line arguments can be configured in the slaves file following
the hostname.

5.2. crail-env.sh 15

Apache Crail incubating Documentation, Release 1.0

16 Chapter 5. Configuration

CHAPTER

SIX

RUN

For all deployments, make sure the $CRAIL_HOME environment variable is set on each machine to point to the top level
Crail directory.

6.1 Starting Crail manually

The simplest way to run Crail is to start it manually on just a handful nodes. You will need to start the Crail namenode,
plus at least one datanode. To start the namenode execute the following command on the host that is configured to be
the namenode:

$CRAIL_HOME/bin/crail namenode

To start a datanode run the following command on a host in the cluster (ideally this is a different physical machine than
the one running the namenode):

$CRAIL_HOME/bin/crail datanode

Now you should have a small deployment up with just one datanode. In this case the datanode is of type TCP/DRAM,
which is the default datnode. If you want to start a different storage tier you can do so by passing a specific storage tier
type. You can find a list of supported storage tiers here. For example:

$CRAIL_HOME/bin/crail datanode -t org.apache.crail.storage.nvmf.NvmfStorageTier

starts the NVMf datanode. Note that configuration in crail-site.conf needs to have the specific properties set of this
type of datanode, in order for this to work. Some storage tiers allow to set configuration properties on the command
line which can be appended after -- to the command line, e.g.:

$CRAIL_HOME/bin/crail datanode -t org.apache.crail.storage.nvmf.NvmfStorageTier -- -a␣
→˓192.168.0.2

Each storage tier instance can only belong to one storage class however the same storage tier type can belong to multiple
storage classes. Refer to Storage Tiers for details. If there is only one storage class per type the storage class is picked
by the order in which they appear in crail.storage.types (crail-site.conf). Use -c <storage_class> To start a
storage tier in a specific storage class, e.g.:

$CRAIL_HOME/bin/crail datanode -t org.apache.crail.storage.nvmf.NvmfStorageTier -c 1

starts a NVMf storage tier in storage class 1 (storage classes start from 0).

17

Apache Crail incubating Documentation, Release 1.0

6.2 Storage Tier Command Line

Command line arguments of the storage tiers override configuration properties in crail-site.conf . Refer to crail-
site.conf for a detailed explanation of the properties and their default values.

6.2.1 TCP

Argument crail-site.conf
-p <port> crail.storage.tcp.port
-c <cores> crail.storage.tcp.cores

6.2.2 RDMA

Argument crail-site.conf
-i <interface> crail.storage.rdma.interface
-p <port> crail.storage.rdma.port
-s crail.storage.rdma.persistent

6.2.3 NVMf

Argument crail-site.conf/Description
-a <ip/hostname> crail.storage.nvmf.ip
-p <port> crail.storage.nvmf.port
-nqn <nqn> crail.storage.nvmf.nqn
-n <namespace_id> Namespace id to use (default 1)
-hostnqn <nqn> crail.storage.nvmf.hostnqn

6.3 Larger deployments

To run larger deployments start Crail using

$CRAIL_HOME/bin/start-crail.sh

Similarly, Crail can be stopped by using

$CRAIL_HOME/bin/stop-crail.sh

For this to work include the list of machines to start datanodes in the slaves file. You can start multiple datanode of
different types on the same host as follows:

host02
host02 -t org.apache.crail.storage.nvmf.NvmfStorageTier -- -a 192.168.0.2
host03

In this example, we are configuring a Crail cluster with 2 physical hosts but 3 datanodes and two different storage tiers.

18 Chapter 6. Run

Apache Crail incubating Documentation, Release 1.0

6.4 Starting Crail in Docker

Refer to Docker for how to run Crail in a Docker container.

6.4. Starting Crail in Docker 19

Apache Crail incubating Documentation, Release 1.0

20 Chapter 6. Run

CHAPTER

SEVEN

SHELL

Crail provides an implementation of the HDFS API thus allows interaction using the HDFS shell. For the HDFS adapter
to work properly the core-site.xml needs to be configured properly.

$CRAIL_HOME/bin/crail fs

Not all shell commands are support but the following operations have been tested to work:

$CRAIL_HOME/bin/crail fs -ls <crail_path>
$CRAIL_HOME/bin/crail fs -mkdir <crail_path>
$CRAIL_HOME/bin/crail fs -copyFromLocal <local_path> <crail_path>
$CRAIL_HOME/bin/crail fs -copyToLocal <crail_path> <local_path>
$CRAIL_HOME/bin/crail fs -cat <crail_path>

21

Apache Crail incubating Documentation, Release 1.0

22 Chapter 7. Shell

CHAPTER

EIGHT

IOBENCH

The iobench tool allows to perform microbenchmarks on Crail.

8.1 Examples

Synchronously write 1MB 1024 times to get a 1GB file:

$CRAIL_HOME/bin/crail iobench -t write -f /filename -s $((1024*1024)) -k 1024

Read 1024 1MB buffers asynchronously with a batch size of 4:

$CRAIL_HOME/bin/crail iobench -t readSequentialAsync -f /filename -s $((1024*1024)) -k␣
→˓1024 -b 4

23

Apache Crail incubating Documentation, Release 1.0

24 Chapter 8. iobench

Apache Crail incubating Documentation, Release 1.0

8.2 Command Reference

Argument Default Experiment type Description
-t <experiment> - N/A

• write - sequential
sync write

• writeAsync - se-
quential async write

• readSequential -
sequential sync read

• readRandom - ran-
dom sync read

•
readSequentialAsync
- sequential async
read

• readMultiStream
- multistream read

• createFile - cre-
ate file RPC

• createFileAsync
- create file async
RPC

• createMultiFile
- create multifile

• getKey - getKey
RPC

• getFile - getFile
sync RPC

• getFileAsync -
getFile async RPC

• enumerateDir -
enumerate directory

• browseDir -
browse directory

• writeInt - write
integer

• readInt - read in-
teger

• seekInt - seek in-
teger

•
readMultiStreamInt
- read integer multi-
stream

•
printLocationclass
- print machine’s
location class

-f <path> /tmp.dat • write
• writeAsync
• readSequential
• readRandom
•
readSequentialAsync

• readMultiStream
• createFile
• createFileAsync
• createMultiFile
• getKey
• getFile
• getFileAsync
• enumerateDir
• browseDir
• writeInt
• readInt
• seekInt
•
readMultiStreamInt

Path to perform operation
with

-s <size> crail.buffersize • write
• writeAsync
• readSequential
• readRandom
•
readSequentialAsync

• readMultiStream
• getKey

Buffer size in bytes. Only
relevant for buffered ex-
periments.

-k <n> 1 • write
• writeAsync
• readSequential
• readRandom
•
readSequentialAsync

• readMultiStream
• createFile
• createFileAsync
• getKey
• getFile
• getFileAsync
• writeInt
• readInt
• seekInt
•
readMultiStreamInt

Number of operations to
perform

-b <size> 1 • writeAsync
•
readSequentialAsync

• readMultiStream
• createFileAsync
• createMultiFile
• getFileAsync
• enumerateDir
•
readMultiStreamInt

Batch size of asyn-
chronous requests.

-c <storage_class> 0 • write
• writeAsync
• createFile

Storage class of file.

-p <location_class> 0 • write
• writeAsync
• createFile

Location class of file

-w <n> 32 • write
• writeAsync
• readSequential
• readRandom
•
readSequentialAsync

• readMultiStream
• createFile
• createFileAsync
• getFile
• getFileAsync
• enumerateDir

Number of warmup opera-
tions

-e <experiments> 1 • readSequential
• readRandom
•
readSequentialAsync

• readMultiStream

Number of experiments to
run

-o <true/false> false • readSequential
• readRandom
•
readSequentialAsync

• readMultiStream

Keep file system open be-
tween experiments

-d <true/false> false • write
• writeAsync

Skip writing directory
record

-m <true/false true • write
• readSequential
• readRandom

Use buffered streams

8.2. Command Reference 25

Apache Crail incubating Documentation, Release 1.0

26 Chapter 8. iobench

CHAPTER

NINE

FSCK

The fsck is used to query Crail internals and perform management operations.

9.1 Reference

Argument Default Experiment type Description
-t <experiment> - N/A • getLocations

• directoryDump
• namenodeDump
• blockStatistics
• ping
• createDirectory

-f <path> /tmp.dat • getLocations
• directoryDump
• namenodeDump
• blockStatistics
• createDirectory

Path to perform operation
with

-y <offset> 0 • getLocations
Offset into file

-l <length> 1 • getLocations
Length starting from off-
set (-y)

-c <storage_class> 0 • createDirectory
Storage class of directory

-p <location_class> 0 • createDirectory
Location class of directory

27

Apache Crail incubating Documentation, Release 1.0

28 Chapter 9. fsck

CHAPTER

TEN

SPARK

Crail can be used to increase performance or enhance flexibility in Apache Spark. We provide multiple plugins to allow
Crail to be used as:

• HDFS Adapter: input and output

• Spark-IO: shuffle data and broadcast store

10.1 HDFS Adapter

The Crail HDFS adapter is provided with every Crail deployment. The HDFS adpater allows to replace every HDFS
path with a path on Crail. However for it to be used for input and output in Spark the jar file paths have to be added to
the Spark configuration spark-defaults.conf:

spark.driver.extraClassPath $CRAIL_HOME/jars/*
spark.executor.extraClassPath $CRAIL_HOME/jars/*

Data in Crail can be accessed by prepending the value of crail.namenode.address from crail-site.conf to any HDFS
path. For example crail://localhost:9060/test accesses /test in Crail. Note that Crail works independent of
HDFS and does not interact with HDFS in any way. However Crail does not completely replace HDFS since we do
not offer durability and fault tolerance cf. Introduction. A good fit for Crail is for example inter-job data that can be
recomputed from the original data in HDFS.

10.2 Spark-IO

Crail-Spark-IO contains various I/O accleration plugins for Spark tailored to high-performance network and storage
hardware (RDMA, NVMef, etc.). Spark-IO is not provided with the default Crail deployment but can be obtained here.
Spark-IO currently contains two IO plugins: a shuffle engine and a broadcast module. Both plugins inherit all the
benefits of Crail such as very high performance (throughput and latency) and multi-tiering (e.g., DRAM and flash).

29

https://spark.apache.org/
https://github.com/zrlio/crail-spark-io

Apache Crail incubating Documentation, Release 1.0

10.2.1 Requirements

• Spark >= 2.0

• Java 8

• Maven

• Crail >= 1.0

10.2.2 Building

To build Crail execute the following steps:

1. Obtain a copy of Crail-Spark-IO from Github

2. Make sure your local maven repository contains Crail, if not build Crail from source

3. Run: mvn -DskipTests install

10.2.3 Configure Spark

To configure the crail shuffle plugin add the following lines to spark-defaults.conf

spark.shuffle.manager org.apache.spark.shuffle.crail.CrailShuffleManager

spark.driver.extraClassPath $CRAIL_HOME/jars/*:<path>/crail-spark-X.Y.jar:.
spark.executor.extraClassPath $CRAIL_HOME/jars/*:<path>/crail-spark-X.Y.jar:.

Since Spark version 2.0.0, broadcast is no longer an exchangeable plugin, unfortunately. To use the Crail broadcast
plugin in Spark it has to be manually added to Spark’s BroadcastManager.scala.

10.3 Crail-TeraSort

10.4 SQL

30 Chapter 10. Spark

https://github.com/zrlio/crail-spark-io

CHAPTER

ELEVEN

PROGRAMMING AGAINST CRAIL

The best way to program against Crail is to use Maven. Make sure you have the Crail dependency specified in your
application pom.xml file with the latest Crail version (e.g. 1.1-incubating):

<dependency>
<groupId>org.apache.crail</groupId>
<artifactId>crail-client</artifactId>
<version>X.Y</version>

</dependency>

Then, create a Crail client as follows:

CrailConfiguration conf = new CrailConfiguration();
CrailStore store = CrailStore.newInstance(conf);

Make sure the $CRAIL_HOME/conf directory is part of the classpath.

Crail supports different file types. The simplest way to create a file in Crail is as follows:

CrailFile file = store.create(filename, CrailNodeType.DATAFILE, CrailStorageClass.
→˓DEFAULT, CrailLocationClass.DEFAULT).get().syncDir();

Aside from the actual filename, the create() call takes as input the storage and location classes which are preferences
for the storage tier and physical location that this file should be created in. Crail tries to satisfy these preferences later
when the file is written. In the example we do not request any particular storage or location affinity.

This create() command is non-blocking, calling get() on the returning future object awaits the completion of the
call. At that time, the file has been created, but its directory entry may not be visible. Therefore, the file may not yet
show up in a file enumeration of the given parent directory. Calling syncDir() waits to for the directory entry to be
completed. Both the get() and the syncDir() operation can be deffered to a later time at which they may become
non-blocking operations.

Once the file is created, a file stream can be obtained for writing:

CrailBufferedOutputStream outstream = file.getBufferedOutputStream(1024);

Here, we create a buffered stream so that we can pass heap byte arrays as well. We could also create a non-buffered
stream using

CrailOutputStream outstream = file.getDirectOutputStream(1024);

In both cases, we pass a write hint (1024 in the example) that indicates to Crail how much data we are intending to
write. This allows Crail to optimize metadatanode lookups. Crail never prefetches data, but it may fetch the metadata
of the very next operation concurrently with the current data operation if the write hint allows to do so.

31

Apache Crail incubating Documentation, Release 1.0

Once the stream has been obtained, there exist various ways to write a file. The code snippet below shows the use of
the asynchronous interface:

CrailBuffer dataBuf = fs.allocateBuffer();
Future<DataResult> future = outputStream.write(dataBuf);
...
future.get();

Reading files works very similar to writing. There exist various examples in org.apache.crail.tools.CrailBenchmark.

32 Chapter 11. Programming against Crail

CHAPTER

TWELVE

HOW TO RELEASE

This guide explains how to prepare for a source and binary release of Apache Crail (Incubating) project for a re-
lease number of x.y (indicated as ${RELEASE_VERSION}) and release candidate number X as rcX (indicated as
${RELEASE_CANDIDATE}).

Table of Contents

• How to release

– 1. Configure your environment for a release

∗ 1.1 Setup git username

∗ 1.2 Setup keys

∗ 1.3 Maven Settings File

– 2. Preparing for a release

– 3. Voting on an RC

∗ 3.1 PPMC voting

∗ 3.2 IPMC voting

– 4. After acceptance

– 5. Useful links

12.1 1. Configure your environment for a release

Before we do a release, lets start by setting up the release environment (and cross check some of the other settings).

12.1.1 1.1 Setup git username

Make sure git is configured properly.

git config user.email "your_id@apache.org"
git config user.name "your_name"

33

Apache Crail incubating Documentation, Release 1.0

12.1.2 1.2 Setup keys

1. Generate a code signing key, https://www.apache.org/dev/openpgp.html#generate-key

gpg --gen-key

2. Check the preference for SHA-1 for your key, https://www.apache.org/dev/openpgp.html#key-gen-avoid-sha1

gpg --edit-key your_key_id

3. Upload/publish the key: https://www.apache.org/dev/release-signing.html#keyserver-upload

gpg --keyserver pgp.mit.edu --send-keys <key id>

4. Add your KEY in the KEYS file:

svn co https://dist.apache.org/repos/dist/release/incubator/crail/
cd crail
(gpg --list-sigs <key id> && gpg --armor --export <key id>) >> KEYS
svn commit KEYS -m "your_name (id@apache.org) keys"

6. Update your profile https://id.apache.org/ with the fingerprint of the key. Find your fingerprint at

gpg --fingerprint

12.1.3 1.3 Maven Settings File

Prior to performing an Apache Crail release, you must have an entry such as this in your ~/.m2/settings.xml file to
authenticate when deploying the release artifacts.

<?xml version="1.0" encoding="UTF-8"?>
<settings xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.
→˓apache.org/xsd/settings-1.0.0.xsd"

xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<servers>
<server>
<id>apache.snapshots.https</id>
<username>USERNAME</username>
<password>PASSWORD</password>

</server>
<server>
<id>apache.releases.https</id>
<username>USERNAME</username>
<password>PASSWORD</password>

</server>
</servers>

</settings>

How to put encrypted password https://maven.apache.org/guides/mini/guide-encryption.html

34 Chapter 12. How to release

https://www.apache.org/dev/openpgp.html#generate-key
https://www.apache.org/dev/openpgp.html#key-gen-avoid-sha1
https://www.apache.org/dev/release-signing.html#keyserver-upload
https://id.apache.org/
https://maven.apache.org/guides/mini/guide-encryption.html

Apache Crail incubating Documentation, Release 1.0

12.2 2. Preparing for a release

A release consists of a doing a (i) source release; (b) binary release; (iii) uploading maven artifacts; (iv) updating
documentation. To do a version release of x.y (which is referred to as ${RELEASE_VERSION}), follow these steps:

1. Update GIT_COMMIT in docker/Dockerfile to the newest release tag, e.g. v1.2. In docker/RDMA/
Dockerfile update FROM to the last Crail version as defined in the parent Dockerfile e.g. 1.2 (without “v”)
and DISNI_COMMIT to the DiSNI version as specified in the parent pom file.

2. Go through the closed JIRAs and merge requests, and update the HISTORY.md file about what is new in the new
release version.

3. Perform mvn apache-rat:check and make sure it is a SUCCESS.

4. Perform mvn checkstyle:check. For now it will fail, but make sure that it runs. We need to gradually fix it.
[JIRA-59](https://issues.apache.org/jira/browse/CRAIL-59)

5. Perform maven prepare release in the interactive mode.

mvn release:prepare -P apache-release -Darguments="-DskipTests" -DinteractiveMode=true -
→˓Dresume=false

The interactive mode allows us to explicitly name the current release version, release candidate, and next version. The
convention here is to follow apache-crail-${RELEASE_VERSION}-incubating-${RELEASE_CANDIDATE} nam-
ing, starting from release candidate 0. So, for a ${RELEASE_VERSION} of 2.12 and release candidate 10, the name
would be apache-crail-2.12-incubating-rc10. For rc0, we let the command increment the pom version. Here
is an example run of this command for the release for 1.2-incubating. As you can see, the first time you run the
command (for rc0, the version are picked automatically). For subsequent RCs, you have to make sure that version is
not incremented unless a RC is successfully voted on. Between RCs, we expect everything to remain the same except
the SCM release tag that you must keep in sync with the release candidate.

NOTE: the SCM tag does not have incubating in its name, and uses a v prefix.

[INFO] Checking dependencies and plugins for snapshots ...
What is the release version for "Crail Project Parent POM"? (org.apache.crail:crail-
→˓parent) 1.2-incubating: : 1.2-incubating
What is the release version for "Crail Client Project"? (org.apache.crail:crail-client)␣
→˓1.2-incubating: : 1.2-incubating
What is the release version for "Crail RPC Project"? (org.apache.crail:crail-rpc) 1.2-
→˓incubating: : 1.2-incubating
What is the release version for "Crail Namenode Project"? (org.apache.crail:crail-
→˓namenode) 1.2-incubating: : 1.2-incubating
What is the release version for "Crail Storage Project"? (org.apache.crail:crail-
→˓storage) 1.2-incubating: : 1.2-incubating
What is the release version for "Crail RDMA Project"? (org.apache.crail:crail-storage-
→˓rdma) 1.2-incubating: : 1.2-incubating
What is the release version for "Crail NVMf Project"? (org.apache.crail:crail-storage-
→˓nvmf) 1.2-incubating: : 1.2-incubating
What is the release version for "Crail Storage NaRPC Project"? (org.apache.crail:crail-
→˓storage-narpc) 1.2-incubating: : 1.2-incubating
What is the release version for "Crail DaRPC Project"? (org.apache.crail:crail-rpc-
→˓darpc) 1.2-incubating: : 1.2-incubating
What is the release version for "Crail RPC/TCP Project"? (org.apache.crail:crail-rpc-
→˓narpc) 1.2-incubating: : 1.2-incubating
What is the release version for "Crail HDFS Project"? (org.apache.crail:crail-hdfs) 1.2-
→˓incubating: : 1.2-incubating

(continues on next page)

12.2. 2. Preparing for a release 35

https://issues.apache.org/jira/browse/CRAIL-59

Apache Crail incubating Documentation, Release 1.0

(continued from previous page)

What is the release version for "Crail Project Assembly"? (org.apache.crail:crail-
→˓assembly) 1.2-incubating: : 1.2-incubating
What is SCM release tag or label for "Crail Project Parent POM"? (org.apache.crail:crail-
→˓parent) crail-parent-1.2-incubating: : v1.2-rc0
What is the new development version for "Crail Project Parent POM"? (org.apache.
→˓crail:crail-parent) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
What is the new development version for "Crail Client Project"? (org.apache.crail:crail-
→˓client) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
What is the new development version for "Crail RPC Project"? (org.apache.crail:crail-
→˓rpc) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
What is the new development version for "Crail Namenode Project"? (org.apache.
→˓crail:crail-namenode) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
What is the new development version for "Crail Storage Project"? (org.apache.crail:crail-
→˓storage) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
What is the new development version for "Crail RDMA Project"? (org.apache.crail:crail-
→˓storage-rdma) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
What is the new development version for "Crail NVMf Project"? (org.apache.crail:crail-
→˓storage-nvmf) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
What is the new development version for "Crail Storage NaRPC Project"? (org.apache.
→˓crail:crail-storage-narpc) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
What is the new development version for "Crail DaRPC Project"? (org.apache.crail:crail-
→˓rpc-darpc) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
What is the new development version for "Crail RPC/TCP Project"? (org.apache.crail:crail-
→˓rpc-narpc) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
What is the new development version for "Crail HDFS Project"? (org.apache.crail:crail-
→˓hdfs) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
What is the new development version for "Crail Project Assembly"? (org.apache.
→˓crail:crail-assembly) 1.3-incubating-SNAPSHOT: : 1.3-incubating-SNAPSHOT
[INFO] Transforming 'Crail Project Parent POM'...
[...]

In case, if you are not sure about some setting, try -DdryRun=true. If something goes wrong then mvn
release:rollback.

NOTE: the binary file and associated signature (asc) and sha512 files are generated at assembly/target/
crail-${RELEASE_VERSION}-incubating-bin.tar.gz. The source file and associated signature (asc) and sha512
files are at assembly/target/crail-${RELEASE_VERSION}-incubating-src.tar.gz.

6. We need to upload the generated artifacts to the “Stage” SVN at https://dist.apache.org/repos/dist/dev/incubator/
crail/. So lets prepare that in a SVN staging directory (SSD)

svn co https://dist.apache.org/repos/dist/dev/incubator/crail/
cd crail
mkdir ${RELEASE_VERSION}-${RELEASE_CANDIDATE}
lets call the created directory the svn staging directory (SSD)
SSD=`pwd`/${RELEASE_VERSION}-${RELEASE_CANDIDATE}

7. Collect all artifacts to release in the SVN staging directory (SSD)

copy files from the crail build location to the SVN staging directory (SSD)
binary file
cp assembly/target/apache-crail-${RELEASE_VERSION}-incubating-bin.tar.gz ${SSD}/
source file

(continues on next page)

36 Chapter 12. How to release

https://dist.apache.org/repos/dist/dev/incubator/crail/
https://dist.apache.org/repos/dist/dev/incubator/crail/

Apache Crail incubating Documentation, Release 1.0

(continued from previous page)

cp assembly/target/apache-crail-${RELEASE_VERSION}-incubating-src.tar.gz ${SSD}/
copy signature files
cp assembly/target/apache-crail-${RELEASE_VERSION}-incubating-bin.tar.gz.asc ${SSD}/
cp assembly/target/apache-crail-${RELEASE_VERSION}-incubating-src.tar.gz.asc ${SSD}/
copy checksum files
cp assembly/target/apache-crail-${RELEASE_VERSION}-incubating-bin.tar.gz.sha512 ${SSD}/
cp assembly/target/apache-crail-${RELEASE_VERSION}-incubating-src.tar.gz.sha512 ${SSD}/
step in the SVN staging directory
cd ${SSD}

8. Verify the checksums for source and binary files

sha512sum -c apache-crail-${RELEASE_VERSION}-incubating-src.tar.gz.sha512
sha512sum -c apache-crail-${RELEASE_VERSION}-incubating-bin.tar.gz.sha512

9. Verify the signatures for source and binary files

gpg --verify apache-crail-${RELEASE_VERSION}-incubating-src.tar.gz.asc apache-crail-$
→˓{RELEASE_VERSION}-incubating-src.tar.gz
gpg --verify apache-crail-${RELEASE_VERSION}-incubating-bin.tar.gz.asc apache-crail-$
→˓{RELEASE_VERSION}-incubating-bin.tar.gz

10. Commit the files after verification in the SVN staging directory

svn add ${RELEASE_VERSION}-${RELEASE_CANDIDATE}
svn commit ${RELEASE_VERSION}-${RELEASE_CANDIDATE} -m "${RELEASE_VERSION}-${RELEASE_
→˓CANDIDATE} release files"

11. Upload the artifacts to the Nexus https://repository.apache.org/index.html#welcome (login using your Apache
ID) by calling

mvn release:perform -P apache-release -Darguments="-DskipTests"

12. After upload you need to

1. Close the staging repository at https://repository.apache.org

2. Login to https://repository.apache.org.

3. Go to “Staging Repos”.

4. Find the “orgapachecrail” repo with the Crail release. Be sure to expand the contents of the repo to confirm
that it contains the correct Crail artifacts.

5. Click on the “Close” button at top, and enter a brief description, such as “Apache Crail (Incubating) ${RE-
LEASE_VERSION} release”. Note this might fail on the very first attempt just repeat closing it.

6. Copy the staging URL like https://repository.apache.org/content/repositories/
orgapachecrail-1000/

13. [Optionally] Check if docker images have been created successfully https://hub.docker.com/r/
apache/incubator-crail/ and https://hub.docker.com/r/apache/incubator-crail-rdma/. Make sure that the
docker configuration file at https://github.com/apache/incubator-crail/blob/v${RELEASE_VERSION}-
${RELEASE_CANDIDATE}/docker/RDMA/Dockerfile contains the right tag version for FROM
crail:[RELEASE_TAG] and the right DiSNI version (which matches the pom file for this release) at ARG
DISNI_COMMIT="[DISNI_VERSION_FROM_CRAIL_POM]".

12.2. 2. Preparing for a release 37

https://repository.apache.org/index.html#welcome
https://repository.apache.org
https://repository.apache.org
https://hub.docker.com/r/apache/incubator-crail/
https://hub.docker.com/r/apache/incubator-crail/
https://hub.docker.com/r/apache/incubator-crail-rdma/
https://github.com/apache/incubator-crail/blob

Apache Crail incubating Documentation, Release 1.0

12.3 3. Voting on an RC

The voting is a 2 step process.

12.3.1 3.1 PPMC voting

First, we need to gather 3 binding votes (PPMC members) on the crail mailing list. To call the vote, you can use this
template:

Subject: [VOTE] Release of Apache Crail-${RELEASE_VERSION}-incubating [${RELEASE_
→˓CANDIDATE}]
==

Hi all,

This is a call for a vote on releasing Apache Crail ${RELEASE_VERSION}-incubating,␣
→˓release candidate X.

The source and binary tarball, including signatures, digests, etc. can be found at:
https://dist.apache.org/repos/dist/dev/incubator/crail/${RELEASE_VERSION}-incubating-$
→˓{RELEASE_CANDIDATE}/

The commit to be voted upon:
https://git-wip-us.apache.org/repos/asf?p=incubator-crail.git;a=commit;h=[REF]

The Nexus Staging URL:
https://repository.apache.org/content/repositories/orgapachecrail-[STAGE_ID]

Release artifacts are signed with the following key:
https://www.apache.org/dist/incubator/crail/KEYS

For information about the contents of this release, see:
https://git-wip-us.apache.org/repos/asf?p=incubator-crail.git;a=blob;f=HISTORY.md;h=$
→˓{RELEASE_HASH}
or https://github.com/apache/incubator-crail/blob/v${RELEASE_VERSION}-${RELEASE_
→˓CANDIDATE}/HISTORY.md

Please vote on releasing this package as Apache Crail ${RELEASE_VERSION}-incubating

The vote will be open for 72 hours.

[] +1 Release this package as Apache Crail ${RELEASE_VERSION}-incubating
[] +0 no opinion
[] -1 Do not release this package because ...

Thanks,
[YOUR_NAME]

Make sure that you modify (i) ${RELEASE_VERSION} in the subject and body; (ii) ${RELEASE_CANDIDATE}
tags; (iii) ${RELEASE_HASH}; (iv) [STAGE_ID]; (iv) YOUR_NAME

After a successful vote, announce the result on the Crail mailing list:

38 Chapter 12. How to release

Apache Crail incubating Documentation, Release 1.0

Subject: [RESULT][VOTE] Crail v${RELEASE_VERSION}-${RELEASE_CANDIDATE} release
==

Hi all,

Thanks for all who voted. I'm closing the vote since the 72 hours have passed. Here are␣
→˓the results:
X + votes
Y - votes

I will call for the IPMC vote.

Thanks,
[YOUR_NAME]

12.3.2 3.2 IPMC voting

After a succesfull PPMC vote, we need to call for the IPMC vote on the general@incubator.apache.org (https:
//incubator.apache.org/guides/lists.html). You can use this template:

Subject:[VOTE] Apache Crail ${RELEASE_VERSION}-incubating (${RELEASE_CANDIDATE})
==

Please vote to approve the source release of Apache Crail ${RELEASE_VERSION}-incubating (
→˓${RELEASE_CANDIDATE}).
[If any] This release candidate fixes all issues raised in the last IPMC vote:
- x
- y
- z

The podling dev vote thread:

https://www.mail-archive.com/dev@crail.apache.org/???.html

The result:

https://www.mail-archive.com/dev@crail.apache.org/???.html

Commit hash: ${RELEASE_HASH}

https://git1-us-west.apache.org/repos/asf?p=incubator-crail.git;a=commit;h=${RELEASE_
→˓HASH}

Release files can be found at:
https://dist.apache.org/repos/dist/dev/incubator/crail/${RELEASE_VERSION}-${RELEASE_
→˓CANDIDATE}/

The Nexus Staging URL:
https://repository.apache.org/content/repositories/orgapachecrail-[STAGE_ID]

Release artifacts are signed with the following key:
(continues on next page)

12.3. 3. Voting on an RC 39

https://incubator.apache.org/guides/lists.html
https://incubator.apache.org/guides/lists.html

Apache Crail incubating Documentation, Release 1.0

(continued from previous page)

https://www.apache.org/dist/incubator/crail/KEYS

For information about the contents of this release, see:
https://git-wip-us.apache.org/repos/asf?p=incubator-crail.git;a=blob;f=HISTORY.md;h=$
→˓{RELEASE_HASH}
or https://github.com/apache/incubator-crail/blob/v${RELEASE_VERSION}-${RELEASE_
→˓CANDIDATE}/HISTORY.md

The vote is open for at least 72 hours and passes if a majority of at least 3 +1 PMC␣
→˓votes are cast.

[] +1 Release this package as Apache Crail 1.0-incubating
[] -1 Do not release this package because ...

Thanks,
[YOUR_NAME]

After a successful vote, annouce the result as:

Subject: [RESULT][VOTE] Apache Crail ${RELEASE_VERSION}-incubating (${RELEASE_CANDIDATE})
===

Hi all,

Thanks for all your votes. Here is the result:
x + votes
y - votes

[If any] Some comments for future votes that I'm about to address:
- x
- y
- z

I'm going to release Crail ${RELEASE_VERSION}-incubating. Thank you all for making this␣
→˓happen!

Thanks,
[YOUR_NAME]

Obviosuly not all calls to vote can succeed. In case of a failed vote, announce as:

Subject:[CANCEL][VOTE] Release of Apache Crail ${RELEASE_VERSION}-incubating (${RELEASE_
→˓CANDIDATE})
===

Hi all,
I'm canceling the vote for Apache Crail ${RELEASE_VERSION}-incubating (${RELEASE_
→˓CANDIDATE}), due to found/discussed issues.

I will prepare a new release candidate.

Thanks,
[YOUR_NAME]

40 Chapter 12. How to release

Apache Crail incubating Documentation, Release 1.0

NOTE: If your PPMC vote fails you have to redo the IPMC vote again after fixing the issues raised in the PPMC vote.

12.4 4. After acceptance

1. Tag the commit (on which the vote happened) with the release version without -${RELEASE_CANDIDATE}. So,
for example, after a successful vote on v1.2-rc5, the hash will be tagged again with v1.2 only.

2. Upload to the “release” (this is different from the “staging” SVN that we used before) SVN https://dist.apache.
org/repos/dist/release/incubator

svn co https://dist.apache.org/repos/dist/release/incubator
cd incubator/crail
mkdir ${RELEASE_VERSION}-incubating
cd ${RELEASE_VERSION}-incubating
copy the tar.gz. asc. and sha512 files for the src and binary releases
Remove old releases and commit

3. Release nexus artifacts. Follow the step 12 in the release process but this time press the release button.

4. Write an announement email. You have to make announcement at two places, the general Apache announcement as
well to crail mailing list. You can use this template to make the announcement:

Subject: [ANNOUNCE] Apache Crail ${RELEASE_VERSION}-incubating released
==

The Apache Crail community is pleased to announce the release of
Apache Crail version ${RELEASE_VERSION}-incubating.

[If any] The key features of this release are:
- x
- y
- z

Crail is a high-performance distributed data store designed for fast
sharing of ephemeral data in distributed data processing workloads. You
can read more about Crail on the website: https://crail.apache.org/

The release is available at:
https://crail.incubator.apache.org/download/

The full change log is available here:
https://github.com/apache/incubator-crail/blob/v${RELEASE_VERSION}/HISTORY.md

We welcome any help and feedback. Check out https://crail.incubator.apache.org/community/
to get involved.

Thanks to all involved for making this first release happen!

Thanks,
[YOUR_NAME]

--
Apache Crail is an effort undergoing incubation at The Apache Software

(continues on next page)

12.4. 4. After acceptance 41

https://dist.apache.org/repos/dist/release/incubator
https://dist.apache.org/repos/dist/release/incubator

Apache Crail incubating Documentation, Release 1.0

(continued from previous page)

Foundation (ASF), sponsored by the Apache Incubator PMC. Incubation is
required of all newly accepted projects until a further review
indicates that the infrastructure, communications, and decision making
process have stabilized in a manner consistent with other successful
ASF projects. While incubation status is not necessarily a reflection
of the completeness or stability of the code, it does indicate that the
project has yet to be fully endorsed by the ASF.```

The Apache annoucement list is at announce@apache.org. You need to subscribe first.

5. Update the download page on the website

6. Social media (Twitter, LinkedIn announcements)

7. [Optionally] Check if docker images have been created successfully https://hub.docker.com/r/apache/
incubator-crail/ and https://hub.docker.com/r/apache/incubator-crail-rdma/ with the new release tag.

12.5 5. Useful links

1. General info for release signing: https://www.apache.org/dev/release-signing.html

2. http://tephra.incubator.apache.org/ReleaseGuide.html

3. https://dubbo.incubator.apache.org/en-us/blog/prepare-an-apache-release.html

42 Chapter 12. How to release

https://hub.docker.com/r/apache/incubator-crail/
https://hub.docker.com/r/apache/incubator-crail/
https://hub.docker.com/r/apache/incubator-crail-rdma/
https://www.apache.org/dev/release-signing.html
http://tephra.incubator.apache.org/ReleaseGuide.html
https://dubbo.incubator.apache.org/en-us/blog/prepare-an-apache-release.html

CHAPTER

THIRTEEN

CONTRIBUTE

For any potential changes/proposals we recommend that you open a JIRA ticket to have a discussion. After making
necessary code changes, please open a pull request at Github, and update the JIRA.

43

https://issues.apache.org/jira/projects/CRAIL/issues
https://github.com/apache/incubator-crail

Apache Crail incubating Documentation, Release 1.0

44 Chapter 13. Contribute

CHAPTER

FOURTEEN

CONTACT

Feel free to ask questions any questions on our mailing list: dev@crail.apache.org

If you find any issues please report them at https://issues.apache.org/jira/projects/CRAIL/issues

45

mailto:dev@crail.apache.org
https://issues.apache.org/jira/projects/CRAIL/issues

	Introduction
	Deploy Crail
	Building from source
	Requirements
	Building

	Docker
	TCP image
	RDMA image
	Own configurations

	Configuration
	crail-site.conf
	RPC
	Logging

	Storage Tiers
	TCP Tier
	RDMA Tier
	NVMf Tier

	crail-env.sh
	core-site.xml
	slaves

	Run
	Starting Crail manually
	Storage Tier Command Line
	TCP
	RDMA
	NVMf

	Larger deployments
	Starting Crail in Docker

	Shell
	iobench
	Examples
	Command Reference

	fsck
	Reference

	Spark
	HDFS Adapter
	Spark-IO
	Requirements
	Building
	Configure Spark

	Crail-TeraSort
	SQL

	Programming against Crail
	How to release
	1. Configure your environment for a release
	1.1 Setup git username
	1.2 Setup keys
	1.3 Maven Settings File

	2. Preparing for a release
	3. Voting on an RC
	3.1 PPMC voting
	3.2 IPMC voting

	4. After acceptance
	5. Useful links

	Contribute
	Contact

